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Abstract—We present a comparative analysis of the maximum performance achieved by the Linpack benchmark [1] on compute

intensive hardware publicly available from multiple cloud providers. We study both performance within a single compute node, and

speedup for distributed memory calculations with up to 32 nodes or at least 512 computing cores. We distinguish between

hyper-threaded and non-hyper-threaded scenarios and estimate the performance per single computing core. We also compare results

with a traditional supercomputing system for reference. Our findings provide a way to rank the cloud providers and demonstrate the

viability of the cloud for high performance computing applications.

Index Terms—Cloud Computing, High Performance Computing, Linpack, Benchmarking.
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1 INTRODUCTION

During the last decade cloud computing established itself
as a viable alternative to on-premises hardware for mission-
critical applications in multiple areas [2], [3], [4]. For high
performance computing (HPC) workloads that traditionally
required large and cost-intensive hardware procurement,
however, the feasibility and advantages of cloud computing
are still debated. In particular, it is often questioned whether
software applications that require distributed memory can
be efficiently run on ”commodity” compute infrastructure
publicly available from cloud computing vendors [5].

Several studies reported on the poor applicability of
cloud-based environments for scientific computing. Multi-
ple research groups ran both standard benchmark suites
such as Linpack and NAS [6], [7], [8], and network perfor-
mance tests [9]. The cost of solving a system of linear equa-
tions was found to increase exponentially with the problem
size, illustrating that cloud was not mature enough for such
workloads in [10]. A study of the impact of virtualization
on network performance reported significant throughput
instability and abnormal delay variations [9]. An empirical
performance evaluation attempted in [11] found that while
cloud computing services are insufficient for scientific ap-
plications at large, they may still be a good solution for the
scientists who need resources instantly and temporarily. The
performance of a set of typical scientific supercomputing
workloads on Amazon EC2 was also found to be lower than
for traditional HPC systems in [5], [12].

Some prior studies had a positive view on the use
of cloud computing. The performance of selected bio-
informatics and astronomy software was examined, and
cloud was found to provide a feasible, cost-effective model
in [13], [14]. In [15] it was found that cloud is capable of
supporting responsive on-demand, small sized HPC appli-
cations. The evaluation of micro-benchmarks, kernels, and
e-Science workloads in [7] found low performance and re-
liability, however reported on the potential applicability for
scientists that need resources immediately and temporarily.

The costs and challenges associated with running a diverse
set of science applications on the cloud were studied and
found to hold promise in [16], [17], [18], [19], [20]. In [21] it
was shown that Amazon Elastic Compute Cloud is a feasi-
ble platform for applications that do not require advanced
network performance. A general review of the field of HPC
applications and their state in cloud computing was also
conducted in [22].

Recent advancements have made it possible to access
large-scale computational resources completely on-demand
in a rapid and efficient manner. When combined with
high fidelity simulations, they can serve as an alternative
pathway to enable computational discovery and design
of new materials through high-throughput screening. At
Exabyte Inc. we have previously demonstrated this with
a case study involving high-throughput screening of struc-
tural alloys using modeling tools rooted in first-principles
quantum mechanical techniques [23]. During an example
run we were able to scale to 10,656 computing cores within
7 minutes from the start. This motivated the need for further
benchmarking. In order to address the concerns about the
specificity of the materials simulation techniques employed
during the aforementioned case study we decided to use a
more general tool for the purpose of our current analysis.

In this work we benchmark the performance of the
publicly available cloud computing hardware with High
Performance Linpack [1], [24], the benchmark that during
the last two decades was employed to rank the top super-
computing systems [24] on the global scale. We compare 4
cloud computing vendors, and include results for a tradi-
tional supercomputer (number 60 on the top500.org list at
the moment of this writing [25]). Our findings demonstrate
that the best-in-class cloud computing options can already
deliver similar scaling patterns and match, if not exceed, the
performance per core of the more traditional high perfor-
mance computing systems.

http://arxiv.org/abs/1702.02968v1
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2 METHODOLOGY

Benchmarking presented in this article is done through High
Performance Linpack (HPL). The program solves a random
system of linear equations, represented by a dense matrix, in
double precision (64 bits) arithmetic on distributed-memory
computers. It does so through a two-dimensional block-
cyclic data distribution, and right-looking variant of the
LU factorization with row partial pivoting. It is a portable
and freely available software package. HPL provides testing
and timing means to quantify the accuracy of the obtained
solution as well as the time-to-completion. The best per-
formance achievable depends on a variety of factors, and
the algorithm is scalable such that its parallel efficiency is
kept constant with respect to per processor memory usage.
Readers may consult the following references for more
information: [1], [24], [26], [27].

Below we present the content of an example input file
for the HPL benchmark suite. Ns is matrix size for the
underlying system of linear equations, Ps and Qs are the
process grid dimensions. These parameters are changed
for each reported case based on the number of cores and
memory used. In order to achieve the optimal performance,
the largest problem size that fits in the memory should be
selected. The amount of memory used by HPL is depen-
dent on the size of the coefficient matrix. The logic behind
choosing the exact input parameters could be demonstrated
by the following line of thought. In case of 4 nodes with
256 Mb of memory each, there is a total of 1 Gb, or 125
million double precision (8 bytes) elements. The square root
of this number is 11585. As one has to leave memory for
the operating system as well as for other system processes,
so a problem size of 10000 would be a good fit. Ps and Qs
depend on the physical interconnection network. As a rule
of thumb P and Q are taken to be approximately equal, with
Q slightly larger than P.

HPL.out output file name

6 device out

1 # of problems

456768 Ns

1 # of NBs

192 NBs

1 PMAP process mapping

1 # of process grids (P x Q)

32 Ps

36 Qs

16.0 threshold

1 # of panel fact

1 PFACTs

1 # of recursive stopping criterion

4 NBMINs

1 # of panels in recursion

2 NDIVs

1 # of recursive panel facts

1 RFACTs

1 # of broadcast

6 BCASTs

1 # of lookahead depths

0 DEPTHs

0 SWAP

1 swapping threshold

1 L1

1 U

0 Equilibration

3 RESULTS

We present the cloud server instance types and hardware
specification for all studied cases inside Table 1. We choose

Table 1: Hardware specification for the compute nodes used
during benchmarking. Core count for physical computing cores
and processor frequency, in GHz, are given together with
Memory (RAM) size, in gigabytes, and network bandwidth in
gigabit-per-second [28], [29], [30], [31].

Provider Nodes Cores Freq. RAM Net

AWS-* c4.8xlarage 18 2.9 60 10

Azure-AZ Standard F16s 16 2.4 32 10

Azure-IB-A A9 16 2.6 112 32

Azure-IB-H H16 16 3.2 112 54

SoftLayer Virtual 16 2.0 64 1

Rackspace Compute1-60 16 2.8 60 5

NERSC Edison 24 2.4 64 64

Table 2: [AWS] Results for Amazon Web Services c4.8xlarge
instances with hyperthreading enabled (default scenario). Core
count is given for virtual (hyper-threaded) computing cores.
Numbers of computing nodes (Nodes) and total computing
cores (Cores) are given together with the maximum achieved
(Rmax) and peak (Rpeak) performance indicators, and the
absolute achieved speedup (Speedup). It can be seen that the
ratio of absolute speedup to the number of nodes falls rapidly
as the number of nodes is increased.

Nodes Cores Rmax (TFLOPS) Rpeak (TFLOPS) Speedup

1 36 0.53 1.63 1.00

2 72 0.98 3.26 1.85

4 144 1.51 6.53 2.87

8 288 2.90 13.05 5.50

16 576 5.23 26.10 9.92

32 1152 8.65 52.20 16.41

the highest performing servers available in an on-demand
fashion. Most of the compute servers have 16 physical cores
and all have at least 2GB per or random access memory per
core. The network options differ quite a bit, from 54 to 1
gigabit per second in bandwidth. We also provide metrics
for the traditional supercomputing system used as reference
[25].

3.1 Amazon Web Services

For Amazon Web Services (AWS) we study 3 different sce-
narios: the default hyper-threaded, non-hyper-threaded and
non-hyper-threaded mode with placement group option
enabled. The c4.8xlarge instance types are used.

3.1.1 Hyper-threaded regime

Table 2 shows the results for AWS instances with hyper-
threading enabled (default regime). It can be seen that the
ratio of absolute speedup to the number of nodes rapidly
decreases as the node count increases.

3.1.2 Non-hyper-threaded regime

Table 3 shows the results for AWS with Hyper-Threading
disabled. Thus only 18 out of 36 cores were used to run
the benchmark, and each core was able to boost into the
turbo-frequency [32]. It can be seen that the ratio of absolute
speedup to the number of nodes still rapidly degrades with
increased node count.
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Table 3: [AWS-NHT] Results for Amazon Web Services
c4.8xlarge instances with hyper-threading disabled. Core count
is given for physical (non-hyper-threaded) computing cores.
Numbers of computing nodes (Nodes) and total computing
cores (Cores) are given together with the maximum achieved
(Rmax) and peak (Rpeak) performance indicators, and the
absolute achieved speedup (Speedup).

Nodes Cores Rmax (TFLOPS) Rpeak (TFLOPS) Speedup

1 18 0.64 0.82 1.00

2 36 1.14 1.63 1.77

4 72 1.94 3.26 3.02

8 144 3.51 6.53 5.47

16 288 5.59 13.05 8.71

32 576 10.68 26.10 16.65

Table 4: [AWS-NHT-PG] Results for Amazon Web Services
c4.8xlarge instances with hyper-threading disabled and with
placement group option enabled at provision time. Core count
is given for physical (non-hyper-threaded) computing cores.
Numbers of computing nodes (Nodes) and total computing
cores (Cores) are given together with the maximum achieved
(Rmax) and peak (Rpeak) performance indicators, and the
absolute achieved speedup (Speedup).

Nodes Cores Rmax (TFLOPS) Rpeak (TFLOPS) Speedup

1 18 0.62 0.82 1.00

2 36 1.14 1.63 1.82

4 72 1.97 3.26 3.15

8 144 3.51 6.53 5.61

16 288 5.70 13.05 9.12

32 576 10.74 26.10 17.18

3.1.3 Non-hyper-threaded regime with placement groups

Table 4 shows the HPL benchmark results with hyper-
threading disabled and placement group option enabled. A
placement group is a logical grouping of instances within a
single availability zone, recommended for applications that
benefit from low network latency, high network throughput,
or both [33]. It can be seen, however, that the ratio of
absolute speedup to the number of nodes shows marginal
differences with respect to the previous scenario, where
placement group option was not used.

3.2 Microsoft Azure

3.2.1 F-series

Table 5 shows the HPL benchmark results running on Azure
Standard F16 instances. Although the overall performance
degradation with increased node count is evident, it appears
to be less severe than for AWS. The bare performance is
worse however.

3.2.2 A-series

Table 5 shows the HPL benchmark results running on
Azure Standard A9 instances using Infiniband interconnect
network. The low-latency network interconnect definitely
affects the scaling, increasing the speed-up ratio from 0.5
to 0.9 for 32 compute nodes. The bare performance figures,
however are still better for AWS due to the higher processor
speed.

Table 5: [AZ-F] Results for Azure F-series instances. Core count
is given for physical (non-hyper-threaded) computing cores.
Numbers of computing nodes (Nodes) and total computing
cores (Cores) are given together with the maximum achieved
(Rmax) and peak (Rpeak) performance indicators, and the
absolute achieved speedup (Speedup).

Nodes Cores Rmax (TFLOPS) Rpeak (TFLOPS) Speedup

1 16 0.48 0.6 1.00

2 32 0.87 1.2 1.82

4 64 1.49 2.4 3.14

8 128 3.04 4.8 6.38

16 256 5.33 9.6 11.18

32 512 10.53 19.2 22.11

Table 6: [AZ-A] Results for Azure A-series instances with
Infiniband [34] interconnect network. Core count is given
for physical (non-hyper-threaded) computing cores. Num-
bers of computing nodes (Nodes) and total computing cores
(Cores) are given together with the maximum achieved (Rmax)
and peak (Rpeak) performance indicators, and the absolute
achieved speedup (Speedup).

Nodes Cores Rmax (TFLOPS) Rpeak (TFLOPS) Speedup

1 16 0.30 0.65 1.00

2 32 0.58 1.3 1.95

4 64 1.16 2.6 3.91

8 128 2.25 5.2 7.56

16 256 4.42 10.4 14.88

32 512 8.59 20.8 28.94

3.2.3 H-series

Table 6 shows the HPL benchmark results running on Azure
Standard H16r instances using Infiniband interconnect net-
work. The low-latency network interconnect enables the
best scaling pattern, with sustained ratio above 0.9 in the
1-32 node count (1-512 computing cores) range. The bare
performance figures are best of all cases studied, even when
compared with the traditional supercomputing system of
reference.

3.3 Rackspace

Table 8 shows the HPL benchmark results running on
Rackspace Compute1-60 instances. Overall, the results are
similar to AWS and Azure. A slight variation (spike) in

Table 7: [AZ-H] Results for Azure H-series instances with
Infiniband [34] interconnect network. Core count is given
for physical (non-hyper-threaded) computing cores. Num-
bers of computing nodes (Nodes) and total computing cores
(Cores) are given together with the maximum achieved (Rmax)
and peak (Rpeak) performance indicators, and the absolute
achieved speedup (Speedup).

Nodes Cores Rmax (TFLOPS) Rpeak (TFLOPS) Speedup

1 16 0.61 0.8 1.00

2 32 1.22 1.6 2.01

4 64 2.40 3.2 3.93

8 128 4.69 6.4 7.69

16 256 9.09 12.8 14.91

32 512 17.26 25.6 28.33
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Table 8: [RS] Results for Rackspace Compute1-60 instances.
Core count is given for physical (non-hyper-threaded) com-
puting cores. Numbers of computing nodes (Nodes) and total
computing cores (Cores) are given together with the maximum
achieved (Rmax) and peak (Rpeak) performance indicators, and
the absolute achieved speedup (Speedup).

Nodes Cores Rmax (TFLOPS) Rpeak (TFLOPS) Speedup

1 32 0.16 0.7 1.00

2 64 0.28 1.4 1.68

4 128 0.57 2.8 3.46

8 256 0.98 5.6 5.97

16 512 2.14 11.2 13.07

32 1024 3.04 22.4 18.55

Table 9: [SL] Results for SoftLayer virtual servers with 32
cores, 64 GB RAM and 1Gb/s bandwidth. Core count is given
for physical (non-hyper-threaded) computing cores. Num-
bers of computing nodes (Nodes) and total computing cores
(Cores) are given together with the maximum achieved (Rmax)
and peak (Rpeak) performance indicators, and the absolute
achieved speedup (Speedup).

Nodes Cores Rmax (TFLOPS) Rpeak (TFLOPS) Speedup

1 32 0.57 0.525 1.00

2 64 0.66 1.05 1.16

4 128 0.44 2.1 0.77

8 256 0.67 4.2 1.17

16 512 1.46 8.4 2.58

32 1024 2.46 16.8 4.33

the speedup ratio for 16 nodes can be associated with the
underlying network topology of the cloud datacenter.

3.4 IBM SoftLayer

Table 9 shows the HPL benchmark results running on
SoftLayer virtual servers. The network quickly saturates at
scale, demonstrating the worst performance out of all cases
studied. The processor clock speeds are also inferior when
compared to other cloud options.

3.5 NERSC

Table 10 shows the HPL benchmark results running on
NERSC Edison supercomputer with hyper-threading en-
abled. Edison is a Cray XC30, with a peak performance
of 2.57 PFLOPS, 133,824 compute cores, 357 terabytes of
memory, and 7.56 petabytes of disk, holding number 60 rank
on the top500 list of the best supercomputers at the moment
of this writing [25].

4 DISCUSSION

In Fig. 1 we present a comparison of the speedup ratios for
the scenarios described the previous part. As it can be seen,
Microsoft Azure outperforms other cloud providers because
of the low latency interconnect network that facilitates ef-
ficient scaling. SoftLayer has the least favorable speedup
ratio at scale, likely because of the interconnect network
again. AWS and Rackspace show a significant degree of
parallel performance degradation, such that at 32 nodes the
measured performance is about one-half of the peak value.

Table 10: [NERSC-E] Results for NERSC Edison supercomputer
with hyper-threading enabled. Core count is given for vir-
tual (hyper-threaded) computing cores. Numbers of computing
nodes (Nodes) and total computing cores (Cores) are given
together with the maximum achieved (Rmax) and peak (Rpeak)
performance indicators, and the absolute achieved speedup
(Speedup).

Nodes Cores Rmax (TFLOPS) Rpeak (TFLOPS) Speedup

1 48 0.38 0.9 1.00

2 96 0.73 1.8 1.91

4 192 1.34 3.6 3.48

8 384 2.79 7.2 7.27

16 768 5.40 14.4 14.06

32 1536 10.44 28.8 27.17

Figure 1: Speedup ratios (the ratios of maximum speedup
Rmax to peak speedup Rpeak) against the number of nodes
for all benchmarked cases. Speedup ratio for 1,2,4,8,16 and
32 nodes are investigated and given by points. Lines are
drawn to guide the eye. The legend is as follows: AWS -
Amazon Web Services in the default hyper-threaded regime;
AWS-NHT - same, with hyperthreading disabled; AWS-NHT-
PG - same, with placement group option enabled; AZ - Mi-
crosoft Azure standard F16 instances; AZ-IB-A - same provider,
A9 instances; AZ-IB-H - same provider, H16 instances; RS -
Rackspace compute1-60 instances; SL - IBM/Softlayer virtual
servers; NERSC - Edison computing facility of the National
Energy Research Scientific Computing Center.

Fig. 2 shows a comparative plot of the performance per
core in giga-FLOPS for the previously described scenarios.
Microsoft Azure H-instances are the highest performing
option in this view as well (AZ-IB-H). One interesting fact is
that although Microsoft Azure A-instances (AZ-IB-A) show
better overall scaling in Fig. 1, AWS c4.8xlarge instances
deliver better performance per core for up to 16 nodes. This
is likely because of faster processors speed. NERSC Edison
supercomputer delivers a rather low performance per core
metric, likely due to the type of processors used.

Our results demonstrate that the current generation of
publicly available cloud computing systems are capable
of delivering comparable, if not better, performance than
the top-tier traditional high performance computing sys-
tems. This fact confirms that cloud computing is already
a viable and cost-effective alternative to traditional cost-
intensive supercomputing procurement. We believe that
with further advancements in virtualization, such as low-
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overhead container technology, and future improvements in
cloud datacenter hardware we may experience a large-scale
migration from on-premises to cloud-based usage for high
performance applications, similar to what happened with
less compute-intensive workloads.

Figure 2: Performance per core in giga-FLOPS against the
number of nodes for all benchmarked cases. Performance per
core is obtained by dividing the maximum performance by the
total number of computing cores. The legend is the same as in
Fig. 1. Lines are given to guide the eye.

5 CONCLUSION

We benchmarked the performance of the best available
computing hardware from public cloud providers with high
performance Linpack. We optimized the benchmark for
each computing environment and evaluated the relative
performance for distributed memory calculations. We found
Microsoft Azure to deliver the best results, and demon-
strated that the performance per single computing core
on public cloud to be comparable to modern traditional
supercomputing systems. Based on our findings we suggest
that the concept of high performance computing in the
cloud is ready for a widespread adoption and can provide a
viable and cost-efficient alternative to capital-intensive on-
premises hardware deployments.
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